Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Clin Pathol ; 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-2325035

ABSTRACT

AIMS: There is a lack of biomarkers validated for assessing clinical deterioration in patients with COVID-19 on presentation to secondary or tertiary care. This evaluation looked at the potential clinical application of C reactive protein (CRP), procalcitonin, mid-regional proadrenomedullin (MR-proADM) and white cell count to support prediction of clinical outcomes. METHODS: 135 patients presenting to Hampshire Hospitals NHS Foundation Trust between April and June 2020 confirmed to have COVID-19 via reverse-transcription-qPCR were included. Biomarkers from within 24 hours of presentation were used to predict disease progression by Cox regression and area under the receiver operating characteristic curves. The endpoints assessed were 30-day all-cause mortality, intubation and ventilation, critical care admission and non-invasive ventilation (NIV) use. RESULTS: Elevated MR-proADM was shown to have the greatest ability to predict 30-day mortality adjusting for age, cardiovascular disease, renal disease and neurological disease. A significant association was also noted between raised MR-proADM and CRP concentrations and the requirement for critical care admission and NIV. CONCLUSIONS: The measurement of MR-proADM and CRP in patients with confirmed COVID-19 infection on admission shows significant potential to support clinicians in identifying those at increased risk of disease progression and need for higher level care, subsequently enabling prompt escalation in clinical interventions.

2.
JAMA Netw Open ; 6(4): e238795, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2293355

ABSTRACT

Importance: Goal-concordant care is an ongoing challenge in hospital settings. Identification of high mortality risk within 30 days may call attention to the need to have serious illness conversations, including the documentation of patient goals of care. Objective: To examine goals of care discussions (GOCDs) in a community hospital setting with patients identified as having a high risk of mortality by a machine learning mortality prediction algorithm. Design, Setting, and Participants: This cohort study took place at community hospitals within 1 health care system. Participants included adult patients with a high risk of 30-day mortality who were admitted to 1 of 4 hospitals between January 2 and July 15, 2021. Patient encounters of inpatients in the intervention hospital where physicians were notified of the computed high risk mortality score were compared with patient encounters of inpatients in 3 community hospitals without the intervention (ie, matched control). Intervention: Physicians of patients with a high risk of mortality within 30 days received notification and were encouraged to arrange for GOCDs. Main Outcomes and Measures: The primary outcome was the percentage change of documented GOCDs prior to discharge. Propensity-score matching was completed on a preintervention and postintervention period using age, sex, race, COVID-19 status, and machine learning-predicted mortality risk scores. A difference-in-difference analysis validated the results. Results: Overall, 537 patients were included in this study with 201 in the preintervention period (94 in the intervention group; 104 in the control group) and 336 patients in the postintervention period. The intervention and control groups included 168 patients per group and were well-balanced in age (mean [SD], 79.3 [9.60] vs 79.6 [9.21] years; standardized mean difference [SMD], 0.03), sex (female, 85 [51%] vs 85 [51%]; SMD, 0), race (White patients, 145 [86%] vs 144 [86%]; SMD 0.006), and Charlson comorbidities (median [range], 8.00 [2.00-15.0] vs 9.00 [2.00 to 19.0]; SMD, 0.34). Patients in the intervention group from preintervention to postintervention period were associated with being 5 times more likely to have documented GOCDs (OR, 5.11 [95% CI, 1.93 to 13.42]; P = .001) by discharge compared with matched controls, and GOCD occurred significantly earlier in the hospitalization in the intervention patients as compared with matched controls (median, 4 [95% CI, 3 to 6] days vs 16 [95% CI, 15 to not applicable] days; P < .001). Similar findings were observed for Black patient and White patient subgroups. Conclusions and Relevance: In this cohort study, patients whose physicians had knowledge of high-risk predictions from machine learning mortality algorithms were associated with being 5 times more likely to have documented GOCDs than matched controls. Additional external validation is needed to determine if similar interventions would be helpful at other institutions.


Subject(s)
COVID-19 , Adult , Humans , Female , Child , Cohort Studies , Hospitalization , Hospitals, Community , Machine Learning
4.
Psychiatr Danub ; 34(Suppl 8): 276-284, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2045060

ABSTRACT

BACKGROUND: During the COVID-19 pandemic as much as 40% of the global population reported deterioration in depressive mood, whereas 26% experienced increased need for emotional support. At the same time, the availability of on-site psychiatric care declined drastically because of the COVID-19 preventive social restriction measures. To address this shortfall, telepsychiatry assumes a greater role in mental health care services. Among various on-line treatment modalities, immersive virtual reality (VR) environments provide an important resource for adjusting the emotional state in people living with depression. Therefore, we reviewed the literature on VR-based interventions for depression treatment during the COVID-19 pandemic. SUBJECTS AND METHODS: We searched the PubMed and Scopus databases, as well as the Internet, for full-length articles published during the period of 2020-2022 citing a set of following key words: "virtual reality", "depression", "COVID-19", as well as their terminological synonyms and word combinations. The inclusion criteria were: 1) the primary or secondary study objectives included the treatment of depressive states or symptoms; 2) the immersive VR intervention used a head-mounted display (HMD); 3) the article presented clinical study results and/or case reports 4) the study was urged by or took place during the COVID-19-associated lockdown period. RESULTS: Overall, 904 records were retrieved using the search strategy. Remarkably, only three studies and one case report satisfied all the inclusion criteria elaborated for the review. These studies included 155 participants: representatives of healthy population (n=40), a case report of a patient with major depressive disorder (n=1), patients with cognitive impairments (n=25), and COVID-19 patients who had survived from ICU treatment (n=89). The described interventions used immersive VR scenarios, in combination with other treatment techniques, and targeted depression. The most robust effect, which the VR-based approach had demonstrated, was an immediate post-intervention improvement in mood and the reduction of depressive symptoms in healthy population. However, studies showed no significant findings in relation to both short-term effectiveness in treatment of depression and primary prevention of depressive symptoms. Also, safety issues were identified, such as: three participants developed mild adverse events (e.g., headache, "giddiness", and VR misuse behavior), and three cases of discomfort related to wearing a VR device were registered. CONCLUSIONS: There has been a lack of appropriately designed clinical trials of the VR-based interventions for depression since the onset of the COVID-19 pandemic. Moreover, all these studies had substantial limitations due to the imprecise study design, small sample size, and minor safety issues, that did not allow us making meaningful judgments and conclude regarding the efficacy of VR in the treatment of depression, taking into account those investigations we have retrieved upon the inclusion criteria of our particularistic review design. This may call for randomized, prospective studies of the short-term and long-lasting effect of VR modalities in managing negative affectivity (sadness, anxiety, anhedonia, self-guilt, ignorance) and inducing positive affectivity (feeling of happiness, joy, motivation, self-confidence, viability) in patients suffering from clinical depression.


Subject(s)
COVID-19 , Depressive Disorder, Major , Psychiatry , Telemedicine , Virtual Reality , Anxiety , Communicable Disease Control , Humans , Pandemics , Prospective Studies
5.
Respir Res ; 23(1): 221, 2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2021292

ABSTRACT

BACKGROUND: Mid-Regional pro-Adrenomedullin (MR-proADM) is an inflammatory biomarker that improves the prognostic assessment of patients with sepsis, septic shock and organ failure. Previous studies of MR-proADM have primarily focussed on bacterial infections. A limited number of small and monocentric studies have examined MR-proADM as a prognostic factor in patients infected with SARS-CoV-2, however there is need for multicenter validation. An evaluation of its utility in predicting need for hospitalisation in viral infections was also performed. METHODS: An observational retrospective analysis of 1861 patients, with SARS-CoV-2 confirmed by RT-qPCR, from 10 hospitals across Europe was performed. Biomarkers, taken upon presentation to Emergency Departments (ED), clinical scores, patient demographics and outcomes were collected. Multiclass random forest classifier models were generated as well as calculation of area under the curve analysis. The primary endpoint was hospital admission with and without death. RESULTS: Patients suitable for safe discharge from Emergency Departments could be identified through an MR-proADM value of ≤ 1.02 nmol/L in combination with a CRP (C-Reactive Protein) of ≤ 20.2 mg/L and age ≤ 64, or in combination with a SOFA (Sequential Organ Failure Assessment) score < 2 if MR-proADM was ≤ 0.83 nmol/L regardless of age. Those at an increased risk of mortality could be identified upon presentation to secondary care with an MR-proADM value of > 0.85 nmol/L, in combination with a SOFA score ≥ 2 and LDH > 720 U/L, or in combination with a CRP > 29.26 mg/L and age ≤ 64, when MR-proADM was > 1.02 nmol/L. CONCLUSIONS: This international study suggests that for patients presenting to the ED with confirmed SARS-CoV-2 infection, MR-proADM in combination with age and CRP or with the patient's SOFA score could identify patients at low risk where outpatient treatment may be safe.


Subject(s)
Adrenomedullin , COVID-19 , Hospitalization , Adrenomedullin/analysis , Biomarkers , C-Reactive Protein , COVID-19/mortality , Hospital Mortality , Humans , Prognosis , Protein Precursors , Retrospective Studies , SARS-CoV-2
6.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Article in English | MEDLINE | ID: covidwho-1895234

ABSTRACT

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
7.
Med Care ; 60(5): 381-386, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1713786

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has challenged the accuracy and racial biases present in traditional mortality scores. An accurate prognostic model that can be applied to hospitalized patients irrespective of race or COVID-19 status may benefit patient care. RESEARCH DESIGN: This cohort study utilized historical and ongoing electronic health record features to develop and validate a deep-learning model applied on the second day of admission predicting a composite outcome of in-hospital mortality, discharge to hospice, or death within 30 days of admission. Model features included patient demographics, diagnoses, procedures, inpatient medications, laboratory values, vital signs, and substance use history. Conventional performance metrics were assessed, and subgroup analysis was performed based on race, COVID-19 status, and intensive care unit admission. SUBJECTS: A total of 35,521 patients hospitalized between April 2020 and October 2020 at a single health care system including a tertiary academic referral center and 9 community hospitals. RESULTS: Of 35,521 patients, including 9831 non-White patients and 2020 COVID-19 patients, 2838 (8.0%) met the composite outcome. Patients who experienced the composite outcome were older (73 vs. 61 y old) with similar sex and race distributions between groups. The model achieved an area under the receiver operating characteristic curve of 0.89 (95% confidence interval: 0.88, 0.91) and an average positive predictive value of 0.46 (0.40, 0.52). Model performance did not differ significantly in White (0.89) and non-White (0.90) subgroups or when grouping by COVID-19 status and intensive care unit admission. CONCLUSION: A deep-learning model using large-volume, structured electronic health record data can effectively predict short-term mortality or hospice outcomes on the second day of admission in the general inpatient population without significant racial bias.


Subject(s)
COVID-19 , Hospices , Algorithms , Cohort Studies , Hospitalization , Humans , Inpatients , Machine Learning , Retrospective Studies , SARS-CoV-2
8.
JAC Antimicrob Resist ; 3(4): dlab180, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1550560

ABSTRACT

BACKGROUND: A low procalcitonin (PCT) concentration facilitates exclusion of bacterial co-infections in COVID-19, but high costs associated with PCT measurements preclude universal adoption. Changes in inflammatory markers, including C-reactive protein (CRP), can be concordant, and predicting low PCT concentrations may avoid costs of redundant tests and support more cost-effective deployment of this diagnostic biomarker. OBJECTIVES: To explore whether, in COVID-19, low PCT values could be predicted by the presence of low CRP concentrations. METHODS: Unselected cohort of 224 COVID-19 patients admitted to hospital that underwent daily PCT and CRP measurements as standard care. Both 0.25 ng/mL and 0.5 ng/mL were used as cut-offs for positive PCT test results. Geometric mean was used to define high and low CRP values at each timepoint assessed. RESULTS: Admission PCT was <0.25 ng/mL in 160/224 (71.4%), 0.25-0.5 ng/mL in 27 (12.0%) and >0.5 ng/mL in 37 (16.5%). Elevated PCT was associated with increased risk of death (P = 0.0004) and was more commonly associated with microbiological evidence of bacterial co-infection (P < 0.0001). For high CRP values, significant heterogeneity in PCT measurements was observed, with maximal positive predictive value of 50% even for a PCT cut-off of 0.25 ng/mL. In contrast, low CRP was strongly predictive of low PCT concentrations, particularly <0.5 ng/mL, with a negative predictive value of 97.6% at time of hospital admission and 100% 48 hours into hospital stay. CONCLUSIONS: CRP-guided PCT testing algorithms can reduce unnecessary PCT measurement and costs, supporting antimicrobial stewardship strategies in COVID-19.

9.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Article in English | MEDLINE | ID: covidwho-1278205

ABSTRACT

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Murine hepatitis virus/drug effects , Unfolded Protein Response/drug effects , Activating Transcription Factor 6/metabolism , Animals , Antiviral Agents/therapeutic use , Cell Line , Chlorocebus aethiops , Drug Delivery Systems , Endoribonucleases/metabolism , HEK293 Cells , Humans , Mice , Protein Serine-Threonine Kinases/metabolism , RNA-Seq , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
10.
J Infect ; 82(1): 117-125, 2021 01.
Article in English | MEDLINE | ID: covidwho-1142027

ABSTRACT

The COVID-19 pandemic has illustrated the importance of simple, rapid and accurate diagnostic testing. This study describes the validation of a new rapid SARS-CoV-2 RT-LAMP assay for use on extracted RNA or directly from swab offering an alternative diagnostic pathway that does not rely on traditional reagents that are often in short supply during a pandemic. Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1 × 101 and 1 × 102 copies per reaction when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT-LAMP was 97% and 99% respectively, relative to the standard of care rRT-PCR. When a CT cut-off of 33 was employed, above which increasingly evidence suggests there is a low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct RT-LAMP (that does not require RNA extraction) was 67% and 97%, respectively. When setting CT cut-offs of ≤33 and ≤25, the DSe increased to 75% and 100%, respectively, time from swab-to-result, CT < 25, was < 15 min. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increased sample throughput and Direct RT-LAMP as a near-patient screening tool to rapidly identify highly contagious individuals within emergency departments and care homes during times of increased disease prevalence ensuring negative results still get laboratory confirmation.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , SARS-CoV-2/genetics , Clinical Laboratory Techniques/methods , Humans , Mass Screening/methods , Real-Time Polymerase Chain Reaction , Saliva/virology , Sensitivity and Specificity
11.
Science ; 372(6539)2021 04 16.
Article in English | MEDLINE | ID: covidwho-1125076

ABSTRACT

Extensive global sampling and sequencing of the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals and how likely they are to be transmitted. To characterize within-host diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed at the point of transmission, with minimal persistence of shared diversity, patterns that are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly if successfully transmitted.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , COVID-19/immunology , Coinfection/virology , Coronavirus Infections/virology , Coronavirus OC43, Human , Family Characteristics , Genome, Viral , Humans , Immune Evasion , Mutation , Phylogeny , RNA, Viral/genetics , RNA-Seq , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics , United Kingdom , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL